Publications

What is a Publication?
33 Publications visible to you, out of a total of 33

Abstract (Expand)

Deep space represents a challenging environment for human exploration and can be accompanied by harmful health-related risks. We aimed to assess the effect of simplified galactic cosmic ray simulated (simGCRsim) and gamma (γ) ionizing radiation (IR) on transcriptome changes in right ventricular (RV) tissue after a single low dose (0.5 Gy, 500 MeV/nucleon) full body exposure in C57BL/6J male and female mice. In females, no differentially expressed genes (DEGs) and only 2 upregulated genes in males exposed to γ-IR were revealed. In contrast, exposure to simGCRsim-IR resulted in 4 DEGs in females and 371 DEGs in males, suggesting longer-lasting and sex-biased DEGs after simGCRsim-IR. Overrepresentation analysis of DEGs in simGCRsim-IR males revealed significant enrichment in pathways related to muscle contraction, hypertrophic cardiomyopathy, oxytocin release, the regulation of cytoskeleton, and genes associated with Alzheimer’s, Huntington’s, and Parkinson’s diseases. Our results suggested the RV transcriptome exhibits distinct responses after exposure based on both the IR and sex.

Authors: Roksana Zakharyan, Siras Hakobyan, Agnieszka Brojakowska, Malik Bisserier, Shihong Zhang, Mary K. Khlgatian, Amit Kumar Rai, Suren Davitavyan, Ani Stepanyan, Tamara Sirunyan, Gisane Khachatryan, Susmita Sahoo, Venkata Naga Srikanth Garikipati, Arsen Arakelyan, David A. Goukassian

Date Published: 21st Jul 2025

Publication Type: Journal

Abstract (Expand)

Space irradiation (IR) is an important health risk for deep-space missions. We reported heart failure with preserved ejection fraction like cardiac phenotype 660-days following exposure to a single-dose of a simplified galactic cosmic ray simulation (simGCRsim) only in males with functional and structural impairment in left ventricular (LV) function. This sex-based dichotomy prompted us to investigate sex-specific changes in the LV transcriptome in three-month-old male and female mice exposed to 137Cs-γ- or simGCRsim-IR. Non-IR male and female (10 each) mice served as controls. LVs were collected at 440/660- and 440/550-days post-IR, male and female, respectively. RNA sequencing, differential gene expression, and functional annotation were performed on tissues from 5 mice/group. Sex and post-IR time points had the greatest influence on gene expression, surpassing the IR-type effects. SimGCRsim-IR showed more persistent transcriptome changes than γ-IR. We suggest that the single IR effects can persist up to 550-660 days, with overwhelmingly sex-biased responses at individual gene expression level.

Authors: Roksana Zakharyan, Siras Hakobyan, Agnieszka Brojakowska, Suren Davitavyan, Ani Stepanyan, Tamara Sirunyan, Gisane Khachatryan, Mary K. Khlgatian, Malik Bisserier, Shihong Zhang, Susmita Sahoo, Lahouaria Hadri, Venkata Naga Srikanth Garikipati, Arsen Arakelyan, David A. Goukassian

Date Published: 18th Feb 2025

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS: Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.

Authors: A. Stepanyan, A. Brojakowska, R. Zakharyan, S. Hakobyan, S. Davitavyan, T. Sirunyan, G. Khachatryan, M. K. Khlgatian, M. Bisserier, S. Zhang, S. Sahoo, L. Hadri, A. Rai, V. N. S. Garikipati, A. Arakelyan, D. A. Goukassian

Date Published: 28th Dec 2024

Publication Type: Journal

Abstract (Expand)

Mediterranean fever (FMF) is a genetically determined autoinflammatory disease transmitted mostly by an autosomal recessive mechanism and caused by point mutations of the MEFV (Mediterranean FeVer) gene. The aim of this study was to evaluate the expression of inflammasome genes (p65, Casp1, MEFV, and NLRP3) in patients with FMF compared to controls to understand the changes playing a key role in disease development. We found altered expression levels of the full-length MEFV isoform as well as Casp1 and p65 in FMF patients versus controls. This, once again, highlighted the significance of inflammasome genes in terms of FMF.

Authors: Varduhi Hayrapetyan, Lana Karapetyan, Lilit Ghukasyan, Sofi Atshemyan, Hovsep Ghazaryan, Valentina Vardanyan, Vahan Mukuchyan, Arsen Arakelyan, Roksana Zakharyan

Date Published: 2nd Dec 2024

Publication Type: Journal

Abstract (Expand)

Mediterranean Fever (FMF) is a genetic disorder with complex inheritance patterns and genotype-phenotype associations, and it is highly prevalent in Armenia. FMF typically follows an autosomal recessive inheritance pattern (OMIM: 249100), though it can occasionally display a rare dominant inheritance pattern with variable penetrance (OMIM։134610). The disease is caused by mutations in the MEFV gene, which encodes the pyrin protein. While the 26 most prevalent mutations account for nearly 99% of all FMF cases, more than 60 pathogenic mutations have been identified. In this study, we aimed to develop an affordable nanopore sequencing method for full-length MEFV gene mutation detection to aid in the diagnosis and screening of FMF. We employed a multiplex amplicon sequencing approach, allowing for the processing of up to 12 samples on both Flow cells and Flongle flow cells. The results demonstrated near-complete concordance between nanopore variant calling and qPCR genotypes. Moreover, nanopore sequencing identified additional variants, which were confirmed by whole exome sequencing. Additionally, intronic and UTR variants were detected. Our findings demonstrate the feasibility of full-gene nanopore sequencing for detecting FMF-associated pathogenic variants. The method is cost-effective, with costs comparable to those of the qPCR test, making it particularly suitable for settings with limited laboratory infrastructure. Further clinical validation using larger sample cohorts will be necessary.

Authors: Lilit Ghukasyan, Gisane Khachatryan, Tamara Sirunyan, Arpine Minasyan, Siras Hakobyan, Andranik Chavushyan, Varduhi Hayrapetyan, Hovsep Ghazaryan, Gevorg Martirosyan, Gohar Mkrtchyan, Valentina Vardanyan, Vahan Mukuchyan, Ashot Davidyants, Roksana Zakharyan, Arsen Arakelyan

Date Published: 29th Nov 2024

Publication Type: Journal

Abstract (Expand)

The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.

Authors: A. Arakelyan, S. Avagyan, A. Kurnosov, T. Mkrtchyan, G. Mkrtchyan, R. Zakharyan, K. R. Mayilyan, H. Binder

Date Published: 17th Feb 2024

Publication Type: Journal

Abstract (Expand)

The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.

Authors: Arsen Arakelyan, Susanna Avagyan, Aleksey Kurnosov, Tigran Mkrtchyan, Gohar Mkrtchyan, Roksana Zakharyan, Karine R. Mayilyan, Hans Binder

Date Published: 17th Feb 2024

Publication Type: Journal

Powered by
(v.1.15.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH