Publications

What is a Publication?
19 Publications visible to you, out of a total of 19

Abstract (Expand)

BACKGROUND: Long-term environmental exposure to metals leads to epigenetic changes and may increase risks to human health. The relationship between the type and level of metal exposure and epigenetic changes in subjects exposed to high concentrations of metals in the environment is not yet clear. The aim of our study is to find the possible association of environmental long-term exposure to metals with DNA methylation changes of genes related to immune response and carcinogenesis. We investigated the association of plasma levels of 21 essential and non-essential metals detected by ICP-MS and the methylation level of 654 CpG sites located on NFKB1, CDKN2A, ESR1, APOA5, IGF2 and H19 genes assessed by targeted bisulfite sequencing in a cohort of 40 subjects living near metal mining area and 40 unexposed subjects. Linear regression was conducted to find differentially methylated positions with adjustment for gender, age, BMI class, smoking and metal concentration. RESULTS: In the metal-exposed group, five CpGs in the NFKB1 promoter region were hypomethylated compared to unexposed group. Four differentially methylated positions (DMPs) were associated with multiple metals, two of them are located on NFKB1 gene, and one each on CDKN2A gene and ESR1 gene. Two DMPs located on NFKB1 (chr4:102500951, associated with Be) and IGF2 (chr11:2134198, associated with U) are associated with specific metal levels. The methylation status of the seven CpGs located on NFKB1 (3), ESR1 (2) and CDKN2A (2) positively correlated with plasma levels of seven metals (As, Sb, Zn, Ni, U, I and Mn). CONCLUSIONS: Our study revealed methylation changes in NFKB1, CDKN2A, IGF2 and ESR1 genes in individuals with long-term human exposure to metals. Further studies are needed to clarify the effect of environmental metal exposure on epigenetic mechanisms and pathways involved.

Authors: A. Stepanyan, A. Petrackova, S. Hakobyan, J. Savara, S. Davitavyan, E. Kriegova, A. Arakelyan

Date Published: 7th Aug 2023

Publication Type: Journal

Abstract (Expand)

We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.

Authors: Y. Dong, S. Duan, Q. Xia, Z. Liang, X. Dong, K. Margaryan, M. Musayev, S. Goryslavets, G. Zdunic, P. F. Bert, T. Lacombe, E. Maul, P. Nick, K. Bitskinashvili, G. D. Bisztray, E. Drori, G. De Lorenzis, J. Cunha, C. F. Popescu, R. Arroyo-Garcia, C. Arnold, A. Ergul, Y. Zhu, C. Ma, S. Wang, S. Liu, L. Tang, C. Wang, D. Li, Y. Pan, J. Li, L. Yang, X. Li, G. Xiang, Z. Yang, B. Chen, Z. Dai, Y. Wang, A. Arakelyan, V. Kuliyev, G. Spotar, N. Girollet, S. Delrot, N. Ollat, P. This, C. Marchal, G. Sarah, V. Laucou, R. Bacilieri, F. Rockel, P. Guan, A. Jung, M. Riemann, L. Ujmajuridze, T. Zakalashvili, D. Maghradze, M. Hohn, G. Jahnke, E. Kiss, T. Deak, O. Rahimi, S. Hubner, F. Grassi, F. Mercati, F. Sunseri, J. Eiras-Dias, A. M. Dumitru, D. Carrasco, A. Rodriguez-Izquierdo, G. Munoz, T. Uysal, C. Ozer, K. Kazan, M. Xu, Y. Wang, S. Zhu, J. Lu, M. Zhao, L. Wang, S. Jiu, Y. Zhang, L. Sun, H. Yang, E. Weiss, S. Wang, Y. Zhu, S. Li, J. Sheng, W. Chen

Date Published: 3rd Mar 2023

Publication Type: Journal

Abstract (Expand)

Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.

Authors: H. Loeffler-Wirth, L. Hopp, M. Schmidt, R. Zakharyan, A. Arakelyan, H. Binder

Date Published: 21st Jan 2022

Publication Type: Journal

Abstract (Expand)

organizing maps portraying has been proven to be a powerful approach for analysis of transcriptomic, genomic, epigenetic, single-cell, and pathway-level data as well as for “multi-omic” integrative analyses. However, the SOM method has a major disadvantage: it requires the retraining of the entire dataset once a new sample is added, which can be resource- and time-demanding. It also shifts the gene landscape, thus complicating the interpretation and comparison of results. To overcome this issue, we have developed two approaches of transfer learning that allow for extending SOM space with new samples, meanwhile preserving its intrinsic structure. The extension SOM (exSOM) approach is based on adding secondary data to the existing SOM space by “meta-gene adaptation”, while supervised SOM portrayal (supSOM) adds support vector machine regression model on top of the original SOM algorithm to “predict” the portrait of a new sample. Both methods have been shown to accurately combine existing and new data. With simulated data, exSOM outperforms supSOM for accuracy, while supSOM significantly reduces the computing time and outperforms exSOM for this parameter. Analysis of real datasets demonstrated the validity of the projection methods with independent datasets mapped on existing SOM space. Moreover, both methods well handle the projection of samples with new characteristics that were not present in training datasets.

Authors: Maria Nikoghosyan, Henry Loeffler-Wirth, Suren Davidavyan, Hans Binder, Arsen Arakelyan

Date Published: 27th Dec 2021

Publication Type: Journal

Abstract (Expand)

Armenia is an important country of origin of cultivated Vitis vinifera subsp. vinifera and wild Vitis vinifera subsp. sylvestris and has played a key role in the long history of grape cultivation in the Southern Caucasus. The existence of immense grapevine biodiversity in a small territory is strongly linked with unique relief and diverse climate conditions assembled with millennium-lasting cultural and historical context. In the present in-depth study using 25 nSSR markers, 492 samples collected in old vineyards, home gardens, and private collections were genotyped. For verification of cultivar identity, the symbiotic approach combining genotypic and phenotypic characterization for each genotype was carried out. The study provided 221 unique varieties, including 5 mutants, from which 66 were widely grown, neglected or minor autochthonous grapevine varieties, 49 turned out to be new bred cultivars created within the national breeding programs mainly during Soviet Era and 34 were non-Armenian varieties with different countries of origin. No references and corresponding genetic profiles existed for 67 genotypes. Parentage analysis was performed inferring 62 trios with 53 out of them having not been previously reported and 185 half-kinships. Instability of grapevine cultivars was detected, showing allelic variants, with three and in rare cases four alleles at one loci. Obtained results have great importance and revealed that Armenia conserved an extensive grape genetic diversity despite geographical isolation and low material exchange. This gene pool richness represents a huge reservoir of under-explored genetic diversity.

Authors: K. Margaryan, G. Melyan, F. Rockel, R. Topfer, E. Maul

Date Published: 6th Dec 2021

Publication Type: Journal

Abstract (Expand)

Telomere maintenance is one of the mechanisms ensuring indefinite divisions of cancer and stem cells. Good understanding of telomere maintenance mechanisms (TMM) is important for studying cancers and designing therapies. However, molecular factors triggering selective activation of either the telomerase dependent (TEL) or the alternative lengthening of telomeres (ALT) pathway are poorly understood. In addition, more accurate and easy-to-use methodologies are required for TMM phenotyping. In this study, we have performed literature based reconstruction of signaling pathways for the ALT and TEL TMMs. Gene expression data were used for computational assessment of TMM pathway activities and compared with experimental assays for TEL and ALT. Explicit consideration of pathway topology makes bioinformatics analysis more informative compared to computational methods based on simple summary measures of gene expression. Application to healthy human tissues showed high ALT and TEL pathway activities in testis, and identified genes and pathways that may trigger TMM activation. Our approach offers a novel option for systematic investigation of TMM activation patterns across cancers and healthy tissues for dissecting pathway-based molecular markers with diagnostic impact.

Authors: L. Nersisyan, A. Simonyan, H. Binder, A. Arakelyan

Date Published: 26th Apr 2021

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Whole-genome studies of vine cultivars have brought novel knowledge about the diversity, geographical relatedness, historical origin and dissemination, phenotype associations and genetic markers. METHOD: We applied SOM (self-organizing maps) portrayal, a neural network-based machine learning method, to re-analyze the genome-wide Single Nucleotide Polymorphism (SNP) data of nearly eight hundred grapevine cultivars. The method generates genome-specific data landscapes. Their topology reflects the geographical distribution of cultivars, indicates paths of cultivar dissemination in history and genome-phenotype associations about grape utilization. RESULTS: The landscape of vine genomes resembles the geographic map of the Mediterranean world, reflecting two major dissemination paths from South Caucasus along a northern route via Balkan towards Western Europe and along a southern route via Palestine and Maghreb towards Iberian Peninsula. The Mediterranean and Black Sea, as well as the Pyrenees, constitute barriers for genetic exchange. On the coarsest level of stratification, cultivars divide into three major groups: Western Europe and Italian grapes, Iberian grapes and vine cultivars from Near East and Maghreb regions. Genetic landmarks were associated with agronomic traits, referring to their utilization as table and wine grapes. Pseudotime analysis describes the dissemination of grapevines in an East to West direction in different waves of cultivation. CONCLUSION: In analogy to the tasks of the wine waiter in gastronomy, the sommelier, our 'SOMmelier'-approach supports understanding the diversity of grapevine genomes in the context of their geographic and historical background, using SOM portrayal. It offers an option to supplement vine cultivar passports by genome fingerprint portraits.

Authors: M. Nikoghosyan, M. Schmidt, K. Margaryan, H. Loeffler-Wirth, A. Arakelyan, H. Binder

Date Published: 17th Jul 2020

Publication Type: Journal

Powered by
(v.1.15.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH