Publications

What is a Publication?
27 Publications visible to you, out of a total of 27

Abstract (Expand)

Pollution with metals and metalloids is a global problem that adversely affects human health and environment. Although several studies have reported gene expression changes in response to human exposures to metals, there are a limited number of studies exploring the effect of long-term residence in mining areas. The evidence of increased levels of several essential and non-essential metals in soil, water, and plants in Kapan mining area (Armenia) has been previously demonstrated in several environmental studies. Our study investigated the impact of long-term residence in this mining area on the transcriptome state of human peripheral blood mononuclear cells and the possible association of transcriptome changes with the blood metallome. In total, 58 participants including 27 mining region residents (MRR) and 31 non-mining region residents (NMR) were selected for our study. Transcriptomic analysis of peripheral blood mononuclear cells was performed by mRNA sequencing. Differential expression analyses were conducted using generalized linear modeling, optimized for participant demographics, cell types, and sequencing technical factors, followed by pathway analysis. The study revealed that long-term residence in a mining area is correlated with alterations in the blood transcriptome, with responses varying by sex. The identified transcriptome changes were enriched for pathways related to immune response and RNA translation. These changes correlated with higher blood levels of a mixture of non-essential metals, including arsenic, antimony, nickel, thallium, and beryllium. Additionally, the study identified differences in the transcriptome response between male and female MRR. While females exhibited a stronger immune response, males show dysregulation in ion transport and epigenetic modifications. Our findings contribute to understanding the effects of long-term residence in mining regions and can aid in developing more effective risk assessment and mitigation approaches in target populations.

Authors: A. Stepanyan, A. Arakelyan, J. Schug

Date Published: 24th Mar 2025

Publication Type: Journal

Abstract (Expand)

Background/Objectives: Massively parallel sequencing technologies have advanced chronic lymphocytic leukemia (CLL) diagnostics and precision oncology. Illumina platforms, while offering robust performance, require substantial infrastructure investment and a large number of samples for cost-efficiency. Conversely, third-generation long-read nanopore sequencing from Oxford Nanopore Technologies (ONT) can significantly reduce sequencing costs, making it a valuable tool in resource-limited settings. However, nanopore sequencing faces challenges with lower accuracy and throughput than Illumina platforms, necessitating additional computational strategies. In this paper, we demonstrate that integrating publicly available short-read data with in-house generated ONT data, along with the application of machine learning approaches, enables the characterization of the CLL transcriptome landscape, the identification of clinically relevant molecular subtypes, and the assignment of these subtypes to nanopore-sequenced samples. Methods: Public Illumina RNA sequencing data for 608 CLL samples were obtained from the CLL-Map Portal. CLL transcriptome analysis, gene module identification, and transcriptomic subtype classification were performed using the oposSOM R package for high-dimensional data visualization with self-organizing maps. Eight CLL patients were recruited from the Hematology Center After Prof. R. Yeolyan (Yerevan, Armenia). Sequencing libraries were prepared from blood total RNA using the PCR-cDNA sequencing-barcoding kit (SQK-PCB109) following the manufacturer's protocol and sequenced on an R9.4.1 flow cell for 24-48 h. Raw reads were converted to TPM values. These data were projected into the SOMs space using the supervised SOMs portrayal (supSOM) approach to predict the SOMs portrait of new samples using support vector machine regression. Results: The CLL transcriptomic landscape reveals disruptions in gene modules (spots) associated with T cell cytotoxicity, B and T cell activation, inflammation, cell cycle, DNA repair, proliferation, and splicing. A specific gene module contained genes associated with poor prognosis in CLL. Accordingly, CLL samples were classified into T-cell cytotoxic, immune, proliferative, splicing, and three mixed types: proliferative-immune, proliferative-splicing, and proliferative-immune-splicing. These transcriptomic subtypes were associated with survival orthogonal to gender and mutation status. Using supervised machine learning approaches, transcriptomic subtypes were assigned to patient samples sequenced with nanopore sequencing. Conclusions: This study demonstrates that the CLL transcriptome landscape can be parsed into functional modules, revealing distinct molecular subtypes based on proliferative and immune activity, with important implications for prognosis and treatment that are orthogonal to other molecular classifications. Additionally, the integration of nanopore sequencing with public datasets and machine learning offers a cost-effective approach to molecular subtyping and prognostic prediction, facilitating more accessible and personalized CLL care.

Authors: A. Arakelyan, T. Sirunyan, G. Khachatryan, S. Hakobyan, A. Minasyan, M. Nikoghosyan, M. Hakobyan, A. Chavushyan, G. Martirosyan, Y. Hakobyan, H. Binder

Date Published: 13th Mar 2025

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS: Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.

Authors: A. Stepanyan, A. Brojakowska, R. Zakharyan, S. Hakobyan, S. Davitavyan, T. Sirunyan, G. Khachatryan, M. K. Khlgatian, M. Bisserier, S. Zhang, S. Sahoo, L. Hadri, A. Rai, V. N. S. Garikipati, A. Arakelyan, D. A. Goukassian

Date Published: 28th Dec 2024

Publication Type: Journal

Abstract (Expand)

Mediterranean fever (FMF) is a genetically determined autoinflammatory disease transmitted mostly by an autosomal recessive mechanism and caused by point mutations of the MEFV (Mediterranean FeVer) gene. The aim of this study was to evaluate the expression of inflammasome genes (p65, Casp1, MEFV, and NLRP3) in patients with FMF compared to controls to understand the changes playing a key role in disease development. We found altered expression levels of the full-length MEFV isoform as well as Casp1 and p65 in FMF patients versus controls. This, once again, highlighted the significance of inflammasome genes in terms of FMF.

Authors: Varduhi Hayrapetyan, Lana Karapetyan, Lilit Ghukasyan, Sofi Atshemyan, Hovsep Ghazaryan, Valentina Vardanyan, Vahan Mukuchyan, Arsen Arakelyan, Roksana Zakharyan

Date Published: 2nd Dec 2024

Publication Type: Journal

Abstract (Expand)

Mediterranean Fever (FMF) is a genetic disorder with complex inheritance patterns and genotype-phenotype associations, and it is highly prevalent in Armenia. FMF typically follows an autosomal recessive inheritance pattern (OMIM: 249100), though it can occasionally display a rare dominant inheritance pattern with variable penetrance (OMIM։134610). The disease is caused by mutations in the MEFV gene, which encodes the pyrin protein. While the 26 most prevalent mutations account for nearly 99% of all FMF cases, more than 60 pathogenic mutations have been identified. In this study, we aimed to develop an affordable nanopore sequencing method for full-length MEFV gene mutation detection to aid in the diagnosis and screening of FMF. We employed a multiplex amplicon sequencing approach, allowing for the processing of up to 12 samples on both Flow cells and Flongle flow cells. The results demonstrated near-complete concordance between nanopore variant calling and qPCR genotypes. Moreover, nanopore sequencing identified additional variants, which were confirmed by whole exome sequencing. Additionally, intronic and UTR variants were detected. Our findings demonstrate the feasibility of full-gene nanopore sequencing for detecting FMF-associated pathogenic variants. The method is cost-effective, with costs comparable to those of the qPCR test, making it particularly suitable for settings with limited laboratory infrastructure. Further clinical validation using larger sample cohorts will be necessary.

Authors: Lilit Ghukasyan, Gisane Khachatryan, Tamara Sirunyan, Arpine Minasyan, Siras Hakobyan, Andranik Chavushyan, Varduhi Hayrapetyan, Hovsep Ghazaryan, Gevorg Martirosyan, Gohar Mkrtchyan, Valentina Vardanyan, Vahan Mukuchyan, Ashot Davidyants, Roksana Zakharyan, Arsen Arakelyan

Date Published: 29th Nov 2024

Publication Type: Journal

Abstract (Expand)

Mechanisms underlying grapevine responses to water(-deficient) stress (WS) are crucial for viticulture amid escalating climate change challenges. Reanalysis of previous transcriptome data uncovered disparities among isohydric and anisohydric grapevine cultivars in managing water scarcity. By using a self-organizing map (SOM) transcriptome portrayal, we elucidate specific gene expression trajectories, shedding light on the dynamic interplay of transcriptional programs as stress duration progresses. Functional annotation reveals key pathways involved in drought response, pinpointing potential targets for enhancing drought resilience in grapevine cultivation. Our results indicate distinct gene expression responses, with the isohydric cultivar favoring plant growth and possibly stilbenoid synthesis, while the anisohydric cultivar engages more in stress response and water management mechanisms. Notably, prolonged WS leads to converging stress responses in both cultivars, particularly through the activation of chaperones for stress mitigation. These findings underscore the importance of understanding cultivar-specific WS responses to develop sustainable viticultural strategies in the face of changing climate.

Authors: T. Konecny, A. Asatryan, M. Nikoghosyan, H. Binder

Date Published: 6th Sep 2024

Publication Type: Journal

Abstract (Expand)

Telomeres, protective caps at chromosome ends, maintain genomic stability and control cell lifespan. Dysregulated telomere maintenance mechanisms (TMMs) are cancer hallmarks, enabling unchecked cell proliferation. We conducted a pan-cancer evaluation of TMM using RNA sequencing data from The Cancer Genome Atlas for 33 different cancer types and analyzed the activities of telomerase-dependent (TEL) and alternative lengthening of telomeres (ALT) TMM pathways in detail. To further characterize the TMM profiles, we categorized the tumors based on their ALT and TEL TMM pathway activities into five major phenotypes: ALT (high) TEL (low), ALT (low) TEL (low), ALT (middle) TEL (middle), ALT (high) TEL (high), and ALT (low) TEL (high). These phenotypes refer to variations in telomere maintenance strategies, shedding light on the heterogeneous nature of telomere regulation in cancer. Moreover, we investigated the clinical implications of TMM phenotypes by examining their associations with clinical characteristics and patient outcomes. Specific TMM profiles were linked to specific survival patterns, emphasizing the potential of TMM profiling as a prognostic indicator and aiding in personalized cancer treatment strategies. Gene ontology analysis of the TMM phenotypes unveiled enriched biological processes associated with cell cycle regulation (both TEL and ALT), DNA replication (TEL), and chromosome dynamics (ALT) showing that telomere maintenance is tightly intertwined with cellular processes governing proliferation and genomic stability. Overall, our study provides an overview of the complexity of transcriptional regulation of telomere maintenance mechanisms in cancer.

Authors: M. Hakobyan, H. Binder, A. Arakelyan

Date Published: 2nd Jul 2024

Publication Type: Journal

Powered by
(v.1.15.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH