Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Background/Objectives: Massively parallel sequencing technologies have advanced chronic lymphocytic leukemia (CLL) diagnostics and precision oncology. Illumina platforms, while offering robust performance, require substantial infrastructure investment and a large number of samples for cost-efficiency. Conversely, third-generation long-read nanopore sequencing from Oxford Nanopore Technologies (ONT) can significantly reduce sequencing costs, making it a valuable tool in resource-limited settings. However, nanopore sequencing faces challenges with lower accuracy and throughput than Illumina platforms, necessitating additional computational strategies. In this paper, we demonstrate that integrating publicly available short-read data with in-house generated ONT data, along with the application of machine learning approaches, enables the characterization of the CLL transcriptome landscape, the identification of clinically relevant molecular subtypes, and the assignment of these subtypes to nanopore-sequenced samples. Methods: Public Illumina RNA sequencing data for 608 CLL samples were obtained from the CLL-Map Portal. CLL transcriptome analysis, gene module identification, and transcriptomic subtype classification were performed using the oposSOM R package for high-dimensional data visualization with self-organizing maps. Eight CLL patients were recruited from the Hematology Center After Prof. R. Yeolyan (Yerevan, Armenia). Sequencing libraries were prepared from blood total RNA using the PCR-cDNA sequencing-barcoding kit (SQK-PCB109) following the manufacturer's protocol and sequenced on an R9.4.1 flow cell for 24-48 h. Raw reads were converted to TPM values. These data were projected into the SOMs space using the supervised SOMs portrayal (supSOM) approach to predict the SOMs portrait of new samples using support vector machine regression. Results: The CLL transcriptomic landscape reveals disruptions in gene modules (spots) associated with T cell cytotoxicity, B and T cell activation, inflammation, cell cycle, DNA repair, proliferation, and splicing. A specific gene module contained genes associated with poor prognosis in CLL. Accordingly, CLL samples were classified into T-cell cytotoxic, immune, proliferative, splicing, and three mixed types: proliferative-immune, proliferative-splicing, and proliferative-immune-splicing. These transcriptomic subtypes were associated with survival orthogonal to gender and mutation status. Using supervised machine learning approaches, transcriptomic subtypes were assigned to patient samples sequenced with nanopore sequencing. Conclusions: This study demonstrates that the CLL transcriptome landscape can be parsed into functional modules, revealing distinct molecular subtypes based on proliferative and immune activity, with important implications for prognosis and treatment that are orthogonal to other molecular classifications. Additionally, the integration of nanopore sequencing with public datasets and machine learning offers a cost-effective approach to molecular subtyping and prognostic prediction, facilitating more accessible and personalized CLL care.

Authors: A. Arakelyan, T. Sirunyan, G. Khachatryan, S. Hakobyan, A. Minasyan, M. Nikoghosyan, M. Hakobyan, A. Chavushyan, G. Martirosyan, Y. Hakobyan, H. Binder

Date Published: 13th Mar 2025

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS: Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.

Authors: A. Stepanyan, A. Brojakowska, R. Zakharyan, S. Hakobyan, S. Davitavyan, T. Sirunyan, G. Khachatryan, M. K. Khlgatian, M. Bisserier, S. Zhang, S. Sahoo, L. Hadri, A. Rai, V. N. S. Garikipati, A. Arakelyan, D. A. Goukassian

Date Published: 28th Dec 2024

Publication Type: Journal

Powered by
(v.1.15.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH