Publications

What is a Publication?
15 Publications visible to you, out of a total of 15

Abstract (Expand)

Environmental exposure to toxic and essential metals can disrupt host immune function through mechanisms involving epigenetic, transcriptional, and post-transcriptional regulation. Although numerous studies have investigated these regulatory layers separately, integrative analyses across molecular levels in relation to metallome is missing. In this study, we performed a targeted multi-omics analysis of six immune-associated genes (NFKB1, CDKN2A, IGF2, H19, ESR1, and APOA5) and corresponding proteins in healthy residents from a long-term mining region (MRR, n = 46) and a non-mining region (NMR, n = 48). Transcriptome data were generated by mRNA sequencing, while DNA methylation data were obtained using targeted bisulfite sequencing by analyzing previously identified differentially methylated positions. Plasma protein levels were measured by enzyme-linked immunosorbent assay, and plasma metal concentrations were quantified using inductively coupled plasma mass spectrometry. We observed significantly higher plasma levels of NFKB1 and CDKN2A proteins, along with lower ESR1 transcript levels, in residents of the mining region compared to the non-mining region. NFKB1 protein levels were associated with both promoter methylation and residence in mining region, suggesting a regulatory cascade from DNA methylation to protein expression. IGF2 protein levels were higher in males and showed positive associations with age and the cumulative Z-score of essential metal mixture burden. Our results show that long-term residence in mining regions is associated with changes in NFKB1 at both the DNA methylation and protein levels, which may serve as a sensitive biomarker of metal exposure.

Authors: Yeva Bareghamyan, Arpine Minasyan, Suren Davitavyan, Anna Petrackova, Jakub Savara, Romana Nesnadna, Eva Kriegova, Jonathan Schug, Arsen Arakelyan, Ani Stepanyan

Date Published: 4th Jan 2026

Publication Type: Journal

Abstract (Expand)

The Western diet (WD) has been linked to various structural and functional alterations in the left ventricle (LV), but the molecular response of the right ventricle (RV) remains largely unknown. Given the RV’s distinct anatomical and functional characteristics, it is crucial to understand how long-term WD exposure affects RV gene expression, especially in a sex-specific context. Our objective was to perform gene expression profiling of the RV late responses to WD in wild-type mice. Male and female C57BL/6J mice were fed a WD for 125 days from 300 to 425 days of age, and RV tissues were collected at 530 and 640/750 (female/male) days. mRNA sequencing was performed on RV tissues to identify differentially expressed genes (DEGs) between WD-fed and normal diet (ND)-fed groups. Data processing and analysis were conducted using the STAR aligner and DESeq2. WD-induced RV transcriptomic changes were characterized by differential expression of genes associated with cardiac remodeling and transcriptional regulation in both sexes. In females, additional genes showing altered expression were associated with immune response, whereas in males, changes were more limited, primarily involving genes related to circadian rhythm and cardiac remodeling. Echocardiography revealed modest, sex-specific differences: WD-fed females showed a decrease in right-ventricular internal diameter in diastole and a trend toward increased pulmonary trunk diameter, whereas males showed no notable changes. These exploratory results suggest that WD is associated with modest transcriptomic changes in the RV in both sexes, with only minor structural differences observed in females, indicating subtle sex-specific effects after a switch to normal chow.

Authors: Ani Stepanyan, Siras Hakobyan, Agnieszka Brojakowska, Malik Bisserier, Roksana Zakharyan, Suren Davitavyan, Tamara Sirunyan, Gisane Khachatryan, Mary K. Khlgatian, Shihong Zhang, Ania Baghoomian, Susmita Sahoo, Lahouaria Hadri, Venkata Naga Srikanth Garikipati, Arsen Arakelyan, David A. Goukassian

Date Published: 26th Dec 2025

Publication Type: Journal

Abstract (Expand)

Space radiation represents a significant health risk for deep-space exploration, yet its long-term effects on cardiovascular function remain poorly understood. While our previous studies have highlighted persistent transcriptional changes in left ventricular (LV) and right ventricular (RV) tissues after a single whole-body irradiation in mice, a systems-level understanding of pathway activity deregulation is lacking. To address this gap, we applied the Pathway Signal Flow (PSF) algorithm to analyze long-term pathway activity alterations in LV and RV tissues of C57Bl/6J mice exposed to gamma radiation (100 cGy 137Cs) or the simplified Galactic Cosmic Ray simulation (simGCRsim, 50 cGy 500 MeV/n) composition of ion beams. RNA sequencing data were analyzed to assess pathway activity changes, sex-specific effects, and ventricular differences 440 days post-irradiation. We observed marked sex- and ventricle-specific differences in pathway deregulation. Left ventricular tissues in females exhibited broad signaling pathway alterations after simGCRsim exposure, particularly in immune response, cytoskeletal remodeling, and survival-related pathways (e.g., NF-κB, VEGF, and MAPK). In contrast, male RV tissues demonstrated higher pathway deregulation than LV, particularly in PPAR, NF-κB, and HIF-1 pathways, implicating metabolic disruption and survival adaptations. Furthermore, simGCRsim exposure induced greater long-term pathway perturbations than gamma rays. Our findings suggest that sex-dependent and ventricle-specific signaling alterations contribute to long-term cardiovascular risks following space irradiation. Notably, VEGF and NF-κB signaling emerge as key regulators of cardiac adaptation in females. Future studies in larger cohorts, incorporating early-stage molecular responses and broader pathway analyses, are needed to refine cardiovascular risk assessments for space travel.

Authors: Gisane Khachatryan, Tamara Sirunyan, Siras Hakobyan, Suren Davitavyan, Roksana Zakharyan, Ani Stepanyan, Agnieszka Brojakowska, Mary K Khlgatian, Malik Bisserier, Shihong Zhang, David A Goukassian, Arsen Arakelyan

Date Published: 25th Sep 2025

Publication Type: Journal

Abstract (Expand)

Deep space represents a challenging environment for human exploration and can be accompanied by harmful health-related risks. We aimed to assess the effect of simplified galactic cosmic ray simulated (simGCRsim) and gamma (γ) ionizing radiation (IR) on transcriptome changes in right ventricular (RV) tissue after a single low dose (0.5 Gy, 500 MeV/nucleon) full body exposure in C57BL/6J male and female mice. In females, no differentially expressed genes (DEGs) and only 2 upregulated genes in males exposed to γ-IR were revealed. In contrast, exposure to simGCRsim-IR resulted in 4 DEGs in females and 371 DEGs in males, suggesting longer-lasting and sex-biased DEGs after simGCRsim-IR. Overrepresentation analysis of DEGs in simGCRsim-IR males revealed significant enrichment in pathways related to muscle contraction, hypertrophic cardiomyopathy, oxytocin release, the regulation of cytoskeleton, and genes associated with Alzheimer’s, Huntington’s, and Parkinson’s diseases. Our results suggested the RV transcriptome exhibits distinct responses after exposure based on both the IR and sex.

Authors: Roksana Zakharyan, Siras Hakobyan, Agnieszka Brojakowska, Malik Bisserier, Shihong Zhang, Mary K. Khlgatian, Amit Kumar Rai, Suren Davitavyan, Ani Stepanyan, Tamara Sirunyan, Gisane Khachatryan, Susmita Sahoo, Venkata Naga Srikanth Garikipati, Arsen Arakelyan, David A. Goukassian

Date Published: 21st Jul 2025

Publication Type: Journal

Abstract (Expand)

Pollution with metals and metalloids is a global problem that adversely affects human health and environment. Although several studies have reported gene expression changes in response to human exposures to metals, there are a limited number of studies exploring the effect of long-term residence in mining areas. The evidence of increased levels of several essential and non-essential metals in soil, water, and plants in Kapan mining area (Armenia) has been previously demonstrated in several environmental studies. Our study investigated the impact of long-term residence in this mining area on the transcriptome state of human peripheral blood mononuclear cells and the possible association of transcriptome changes with the blood metallome. In total, 58 participants including 27 mining region residents (MRR) and 31 non-mining region residents (NMR) were selected for our study. Transcriptomic analysis of peripheral blood mononuclear cells was performed by mRNA sequencing. Differential expression analyses were conducted using generalized linear modeling, optimized for participant demographics, cell types, and sequencing technical factors, followed by pathway analysis. The study revealed that long-term residence in a mining area is correlated with alterations in the blood transcriptome, with responses varying by sex. The identified transcriptome changes were enriched for pathways related to immune response and RNA translation. These changes correlated with higher blood levels of a mixture of non-essential metals, including arsenic, antimony, nickel, thallium, and beryllium. Additionally, the study identified differences in the transcriptome response between male and female MRR. While females exhibited a stronger immune response, males show dysregulation in ion transport and epigenetic modifications. Our findings contribute to understanding the effects of long-term residence in mining regions and can aid in developing more effective risk assessment and mitigation approaches in target populations.

Authors: A. Stepanyan, A. Arakelyan, J. Schug

Date Published: 24th Mar 2025

Publication Type: Journal

Abstract (Expand)

Space irradiation (IR) is an important health risk for deep-space missions. We reported heart failure with preserved ejection fraction like cardiac phenotype 660-days following exposure to a single-dose of a simplified galactic cosmic ray simulation (simGCRsim) only in males with functional and structural impairment in left ventricular (LV) function. This sex-based dichotomy prompted us to investigate sex-specific changes in the LV transcriptome in three-month-old male and female mice exposed to 137Cs-γ- or simGCRsim-IR. Non-IR male and female (10 each) mice served as controls. LVs were collected at 440/660- and 440/550-days post-IR, male and female, respectively. RNA sequencing, differential gene expression, and functional annotation were performed on tissues from 5 mice/group. Sex and post-IR time points had the greatest influence on gene expression, surpassing the IR-type effects. SimGCRsim-IR showed more persistent transcriptome changes than γ-IR. We suggest that the single IR effects can persist up to 550-660 days, with overwhelmingly sex-biased responses at individual gene expression level.

Authors: Roksana Zakharyan, Siras Hakobyan, Agnieszka Brojakowska, Suren Davitavyan, Ani Stepanyan, Tamara Sirunyan, Gisane Khachatryan, Mary K. Khlgatian, Malik Bisserier, Shihong Zhang, Susmita Sahoo, Lahouaria Hadri, Venkata Naga Srikanth Garikipati, Arsen Arakelyan, David A. Goukassian

Date Published: 18th Feb 2025

Publication Type: Journal

Abstract (Expand)

BACKGROUND: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS: Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.

Authors: A. Stepanyan, A. Brojakowska, R. Zakharyan, S. Hakobyan, S. Davitavyan, T. Sirunyan, G. Khachatryan, M. K. Khlgatian, M. Bisserier, S. Zhang, S. Sahoo, L. Hadri, A. Rai, V. N. S. Garikipati, A. Arakelyan, D. A. Goukassian

Date Published: 28th Dec 2024

Publication Type: Journal

Powered by
(v.1.15.0-main)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH